PETSc Tutorial

Argonne Training Program on Extreme-Scale Computing
August 2015

Barry Smith

August 6, 2015 1/132

PETSc Tutorial

@ Introduction of tutors

e Barry Smith

o Satish Balay

e Jed Brown
@ Material to be presented

o DAE/ODE integrators
Vectors and matrices
Linear preconditioners
Nonlinear solvers

]
]
o
e Understanding performance

August 6, 2015 2/132

PETSc Structure

A

QDE Integrators

Nonlinear Solvers

August 6, 2015 3/132

Valgrind

Valgrind is a debugging framework

@ Memcheck: Check for memory overwrite and illegal use
@ Callgrind: Generate call graphs

@ Cachegrind: Monitor cache usage

@ Helgrind: Check for race conditions

@ Massif: Monitor memory usage

August 6, 2015 4/132

http://www.valgrind.org

Valgrind

Memcheck

Memcheck will catch
@ lllegal reads and writes to memory
@ Uninitialized values
@ lllegal frees
@ Overlapping copies
@ Memory leaks

August 6, 2015 5/132

Interacting with the Debugger

@ Launch the debugger

@ —-start_in_debugger [gdb,dbx,noxterm]
@ —-on_error_attach_debugger [gdb, dbx,noxterm]

@ Attach the debugger only to some parallel processes
@ —-debugger_nodes 0,1

@ Set the display (often necessary on a cluster)
@ —-display khan.mcs.anl.gov:0.0

August 6, 2015 6/132

Interacting with the Debugger

$./ex6 —-start_in_debugger noxterm, 11db
[0]PETSC ERROR: PETSC: Attaching 11db to ./ex6 of pid 7432
Process 7432 stopped
frame 0: 0x00007£££8d94b48a libsystem_kernel.dylib'__ se
libsystem_kernel.dylib'‘___semwait_signal:

-> 0x7f£f£f£8d94b48a <+10>: jae Ox7£££8d94b494
0x7f£f£8d94b48c <+12>: movqg $rax, %rdi
0x7£f££8d94b48f <+15>: Jjmp 0x7£££8d946c78
0x7£££8d94b494 <+20>: retqg

(11db) ¢

Process 7432 resuming

(11db)

Process 7432 stopped
frame 0: 0x0000000102ecbb80 ex6'‘main (argc=3, args=0x00C

71 ierr = PetscBinaryRead (fd,avec, sz, PETSC_SCALAR);C
-> 72 avec[10000000] = 23;

73 ierr = VecRestoreArray (vec, &avec) ; CHKERRQ (ierr) ;
(11db)

August 6, 2015 7/132

Time integration in PETSc

@ ODE forms supported

G(t, x,x) = F(t,x)
Jo = aGy + Gy or
M(t)x = F(t, x)
Jo =aMor
x = F(t,x)
@ User provides:

@ FormRHSFunction(ts,t, X, F,void xctx);
@ FormIFunction (ts,t, X, X, G,void xctx);
e FormIJacobian(ts,t, X, X,a,d,Jp, void *ctx);

August 6, 2015 8/132

Motivation for IMEX time integration

@ Explicit methods are easy and accurate, but must resolve all time
scales

@ reactions, acoustics, incompressibility
@ Implicit methods are robust
e mathematically good for stiff systems
o harder to implement, need efficient solvers
@ Implicit-explicit methods are fragile and complicated
@ Severe order reduction

o Still need implicit solvers, similar complexity to implicit
(]

August 6, 2015 9/132

Motivation for IMEX time integration

@ Explicit methods are easy and accurate, but must resolve all time
scales

@ reactions, acoustics, incompressibility
@ Implicit methods are robust
e mathematically good for stiff systems
e harder to implement, need efficient solvers
@ Implicit-explicit methods are fragile and complicated
e Severe order reduction

o Still need implicit solvers, similar complexity to implicit
o Why bother?

August 6, 2015 9/132

Motivation for IMEX time integration

@ Explicit methods are easy and accurate, but must resolve all time
scales

@ reactions, acoustics, incompressibility
@ Implicit methods are robust
e mathematically good for stiff systems
e harder to implement, need efficient solvers
@ Implicit-explicit methods are fragile and complicated

Severe order reduction
Still need implicit solvers, similar complexity to implicit
Very expensive non-stiff residual evaluation
Non-stiff components are non-smooth.
@ TVD limiters for monotone transport
@ Phase change

August 6, 2015 9/132

IMEX time integration in PETSc

@ Can have L-stable DIRK for stiff part G, SSP explicit part, etc.

@ Orders 2 through 5, embedded error estimates

Dense output, hot starts for Newton

More accurate methods if G is linear, also Rosenbrock-W

Can use preconditioner from classical “semi-implicit” methods
FAS nonlinear solves supported

Extensible adaptive controllers, can change order within a family

°
°
°
°
@ Easy to register new methods: TSARKIMEXRegister ()
°

Single step interface so user can have own time loop
@ Same interface for Extrapolation IMEX

August 6, 2015 10/132

Some TS methods

TSSSPRK104 10-stage, fourth order, low-storage, optimal explicit
SSP Runge-Kutta ¢y = 0.6 (Ketcheson 2008)

TSARKIMEX2E second order, one explicit and two implicit stages,
L-stable, optimal (Constantinescu)
TSARKIMEXS3 (and 4 and 5), L-stable (Kennedy and Carpenter, 2003)

TSROSWRASBPW three stage, third order, for index-1 PDAE, A-stable,
R(o0) = 0.73, second order strongly A-stable embedded
method (Rang and Angermann, 2005)

TSROSWRAS34PW?2 four stage, third order, L-stable, for index 1
PDAE, second order strongly A-stable embedded method
(Rang and Angermann, 2005)

TSROSWLLSSP3P4S2C four stage, third order, L-stable implicit, SSP
explicit, L-stable embedded method (Constantinescu)

August 6, 2015 11/132

TS Examples

@ 1D nonlinear hyperbolic conservation laws
@ src/ts/examples/tutorials/ex9.c
@ ./ex9 -da_grid_x 100 -initial 1 -physics shallow -limit
minmod -ts_ssp_type rks2 -ts_ssp_nstages 8
-ts_monitor_draw_solution
@ Stiff linear advection-reaction test problem
@ src/ts/examples/tutorials/ex22.c
@ ./ex22 -da_grid_x 200 -ts_monitor_draw_solution
—-ts_type rosw —-ts_rosw_type ra34pw2 -ts_adapt_monitor
@ 1D Brusselator (reaction-diffusion)
@ src/ts/examples/tutorials/ex25.c
@ ./ex25 -da_grid_x 40 -ts_monitor_draw_solution -ts_type
rosw —-ts_rosw_type 2p -ts_adapt_monitor

August 6, 2015 12/132

Main Routine

‘ Timestepping Solvers (TS) ‘

{

‘ Nonlinear Solvers (SNES) ‘

+

[Linear Solvers (KSP) J

: PETSc
v [Preconditioners (PC) J

A

Application Function Jacobian P i
s ostprocessing
Initialization Evaluation Evaluation F °

@ IGA used to evaluate nonlinear residuals

@ PETSc DA used to manage parallelism.

@ Adaptive time integration using method of lines.
e Generalized o method from PETSc Ts.

August 6, 2015 13/132

The PETSc Programming Model

@ Goals
o Portable, runs everywhere
e High performance
@ Scalable parallelism
@ Approach
o Distributed memory (“shared-nothing”)
o No special compiler
o Access to data on remote machines through MPI
o Hide within objects the details of the communication
e User orchestrates communication at a higher abstract level

August 6, 2015 14 /132

Library Design

Numerical libraries should interact at a higher level than MPI

@ MPI coordinates data movement and synchronization for data
parallel applications
@ Numerical libraries should coordinate access to a given data
structure
e MPI can handle data parallelism and something else (runtime
engine) handle task parallelism (van de Geijn, Strout, Demmel)
e Algorithm should be data structure neutral, but its main operation is
still to structure access

August 6, 2015 15/132

Collectivity

@ MPI communicators (MPI_Comm) specify collectivity
@ Processes involved in a computation
@ Constructors are collective over a communicator

@ VecCreate (MPI_Comm comm, Vec #*X)
e Use PETSC_coMM_WORLD for all processes and
PETSC_COMM_SELF for one

@ Some operations are collective, while others are not

@ collective: VecNorm ()
@ not collective: VvecGetLocalSize ()

@ Sequences of collective calls must be in the same order on each
process

August 6, 2015 16/132

Initialization

@ Call petscInitialize ()

e Setup static data and services
e Setup MPI if it is not already
o Can set PETSC_COMM_WORLD to use your communicator
(can always use subcommunicators for each object)
@ Call petscFinalize ()
e Calculates logging summary
e Can check for leaks/unused options
e Shutdown and release resources

@ Can only initialize PETSc once

August 6, 2015 17/132

Vector Algebra

A PETSc Vec

@ Supports all vector space operations
@ VecDot (), VecNorm(), VecScale /()

@ Has a direct interface to the values
@ VecGetArray (), VecGetArrayF90 ()

@ Has unusual operations
@ VecSqgrtAbs (), VecStrideGather ()

@ Communicates automatically during assembly
@ Has customizable communication (VecScatter)

August 6, 2015 18/132

Object-Oriented Design

@ Design based on operations you perform,
e rather than the data in the object

@ Example: A vector is
e not a 1d array of numbers

@ an object allowing addition and scalar multiplication
@ The efficient use of the computer is an added difficulty
e which often leads to code generation

August 6, 2015 19/132

Vector Algebra

What are PETSc vectors?

@ Fundamental objects representing field solutions, right-hand
sides, etc.

@ Each process locally owns a subvector of contiguous global data
How do | create vectors?

@ VecCreate (MPI_Comm, Vec x)

@ VecSetSizes (Vec, int n, int N)

@ VecSetType (Vec, VecType typeName)
@ VecSetFromOptions (Vec)
o Can set the type at runtime

August 6, 2015 20/132

Vector Algebra

A PETSc Vec

@ Has a direct interface to the values

@ Supports all vector space operations
@ VecDot (), VecNorm (), VecScale ()

@ Has unusual operations, e.g. VecsSqgrt (), VecWhichBetween ()
@ Communicates automatically during assembly
@ Has customizable communication (scatters)

August 6, 2015 20/132

Parallel Assembly

Vectors and Matrices

@ Processes may set an arbitrary entry

o Must use proper interface
@ Entries need not be generated locally

o Local meaning the process on which they are stored
@ PETSc automatically moves data if necessary

e Happens during the assembly phase

August 6, 2015 21/132

Vector Assembly

@ A three step process
e Each process sets or adds values
e Begin communication to send values to the correct process
o Complete the communication
@ VecSetValues (Vec v, int n, int rows][],
PetscScalar values|[], mode)
@ mode is either INSERT_VALUES or ADD_VALUES
@ Two phase assembly allows overlap of communication and
computation
@ VecAssemblyBegin (Vec V)
@ VecAssemblyEnd (Vec v)

August 6, 2015 22/132

One Way to Set the Elements of a Vector

VecGetSize (x, &N);
MPI_Comm_rank (PETSC_COMM_WORLD, &rank);
if (rank == 0) {
for(i =0, val = 0.0; i < N; i++, wval += 10.0) {
VecSetValues (x, 1, &i, &val, INSERT_VALUES);

}

/+ These routines ensure that the data is distributed
to the other processes x/

VecAssemblyBegin (x) ;

VecAssemblyEnd (x) ;

August 6, 2015 23/132

A Better Way to Set the Elements of a Vector

VecGetOwnershipRange (x, &low, &high);
for(i = low,val = lowx10.0; i < high; i++,val += 10.0)
{
VecSetValues(x, 1, &i, &val, INSERT_VALUES);
}
/+ These routines ensure that the data is distributed
to the other processes */
VecAssemblyBegin (x) ;
VecAssemblyEnd (x) ;

August 6, 2015 24/132

Ghost Values

To evaluate a local function f(x), each process requires
@ its local portion of the vector x
@ its ghost values, bordering portions of x owned by neighboring

processes

® Local Node
@ Ghost Node

August 6, 2015 25/132

Working With Local Vectors

It is sometimes more efficient to directly access local storage of a vec.
@ PETSc allows you to access the local storage with
@ VecGetArray (Vec, double x[])
@ You must return the array to PETSc when you finish
@ VecRestoreArray (Vec, double *x[])
@ Allows PETSc to handle data structure conversions
@ Commonly, these routines are inexpensive and do not involve a
copy

August 6, 2015 26/132

VecGetArray in C

Vec v;

PetscScalar *array;
PetscInt n, i;
PetscErrorCode ierr;

VecGetArray (v, &array);
VecGetLocalSize (v, &n);
PetscSynchronizedPrintf (PETSC_COMM_WORLD,
"First element of local array is %f\n", array[0]);
PetscSynchronizedFlush (PETSC_COMM_WORLD) ;
for(i = 0; i < n; i++) {
array[i] += (PetscScalar) rank;
}

VecRestoreArray (v, &array);

August 6, 2015 27/132

VecGetArray in F77

#include "finclude/petsc.h"
#include "finclude/petscvec.h"
Vec v;

PetscScalar array (1)
PetscOffset offset

PetscInt n, 1

PetscErrorCode ierr

call VecGetArray (v, array, offset, ierr)
call VecGetLocalSize (v, n, ilerr)
do i=1,n

array (itoffset) = array(itoffset) + rank
end do
call VecRestoreArray (v, array, offset, ierr)

August 6, 2015 27/132

VecGetArray in F90

#include "finclude/petsc.h"
#include "finclude/petscvec.h"
#include "finclude/petscvec.h90"
Vec v;

PetscScalar pointer :: array(:)
PetscInt n, 1

PetscErrorCode ierr

call VecGetArrayF90 (v, array, ierr)
call VecGetLocalSize (v, n, ilerr)
do i=1,n
array (i) = array (i) + rank
end do
call VecRestoreArrayF90 (v, array, ierr)

August 6, 2015 27/132

Selected Vector Operations

Function Name Operation
VecAXPY(Vec y, PetscScalar a, Vec x) y=y+axx
VecAYPX(Vec y, PetscScalar a, Vec x) y=x+axy
VecWAYPX(Vec w, PetscScalar a, Vec x, Vecy) | w =y + ax* X
VecScale(Vec x, PetscScalar a) X=axx
VecCopy(Vec y, Vec x) y=x
VecPointwiseMult(Vec w, Vec x, Vec y) Wi = X * Y
VecMax(Vec x, PetsclInt *idx, PetscScalar *r) I = maxf;
VecShift(Vec x, PetscScalar r) Xi=Xj+r
VecAbs(Vec x) Xi = |xj|
VecNorm(Vec x, NormType type, PetscReal *r) r=||x||

August 6, 2015 28/132

What is a DM?

Interface for linear algebra to talk to grids
Defines (topological part of) a finite-dimensional function space
o Get an element from this space: DMCreateGlobalVector ()

Provides parallel layout
Refinement and coarsening
@ DMRefine (), DMCoarsen ()
Ghost value coherence
@ DMGlobalToLocalBegin ()
Matrix preallocation:
@ DMCreateMatrix () (formerly DMGetMatrix ())

August 6, 2015 29/132

Topology Abstractions

@ DMDA

o Abstracts Cartesian grids in 1, 2, or 3 dimension
@ Supports stencils, communication, reordering
o Nice for simple finite differences

@ DMPLEX

o Abstracts general topology in any dimension
@ Also supports partitioning, distribution, and global orders
o Allows aribtrary element shapes and discretizations

@ DMCOMPOSITE
e Composition of two or more DMs

@ DMNetwork - for discrete networks like power grids and circuits
@ DMMoab - interface to the MOAB unstructured mesh library

August 6, 2015 30/132

DM Vectors

@ The DM object contains only layout (topology) information
o All field data is contained in PETSc Vecs
@ Global vectors are parallel
e Each process stores a unique local portion
@ DMCreateGlobalVector (DM da, Vec =*gvec)
@ Local vectors are sequential (and usually temporary)
e Each process stores its local portion plus ghost values
@ DMCreateLocalVector (DM da, Vec +*lvec)

@ includes ghost values!

August 6, 2015 31/132

Updating Ghosts

Two-step process enables overlapping
computation and communication

@ DMGlobalToLocalBegin (dm, gvec, mode, lvec)

@ gvec provides the data
@ mode is either INSERT_VALUES Or ADD_VALUES
@ lvec holds the local and ghost values

@® DMGlobalToLocalEnd (dm, gvec, mode, lvec)
o Finishes the communication

The process can be reversed with DMLocalToGlobalBegin () and
DMLocalToGlobalEnd ().

August 6, 2015 32/132

Monolithic Global Monolithic Local

Split Local

rank 0 Split Global

rank 0
rank 1

\ / rank 2
rank 2

33/132

What is a DMDA?

DMDA is a topology interface handling parallel data layout on structured
grids
@ Handles local and global indices
@ DMDAGetGlobalIndices () and DMDAGetAO ()
@ Provides local and global vectors
@ DMGetGlobalVector () and DMGetLocalVector ()
@ Handles ghost values coherence
@ DMGetGlobalToLocal () and DMGetLocalToGlobal ()

August 6, 2015 34/132

DMDA Gilobal vs. Local Numbering

@ Global: Each vertex has a unique id belongs on a unique process
@ Local: Numbering includes vertices from neighboring processes
o These are called ghost vertices

Proc 2 Proc 3 Proc 2 Proc 3
X X X | X X 21 22 23|28 29
X X X | X X 18 19 20 |26 27
12 13 14|15 X 15 16 17 |24 25
8 9 10|11 X 6 7 8 |13 14
4 5 6|7 X 3 4 5 |11 12
o 1 2|3 X o 1 2|9 10

Proc O Proc 1 Proc O Proc 1

Local numbering Global numbering

August 6, 2015 35/132

Creating a DADM

DMDACreate2d (comm, bdX, bdy, type, M, N, m, n, dof, s, 1lm[], 1ln[], DMDA =xc

bd: Specifies boundary behavior
@ DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_GHOSTED, Of
DMDA_BOUNDARY_PERIODIC

~ype: Specifies stencil
@ DA_STENCIIL_BOX Of DA_STENCIL_STAR
M/N: Number of grid points in x/y-direction
m/n: Number of processes in x/y-direction
dof: Degrees of freedom per node
s: The stencil width

Im/n: Alternative array of local sizes
o Use PETSC_NULL for the default

August 6, 2015 36/132

DMDA Stencils

Both the box stencil and star stencil are available.

proc 10

proc 0

proc 1

Box Stencil

proc 0

proc 1

Star Stencil

August 6, 2015

37/132

Definition (Matrix)

A matrix is a linear transformation between finite dimensional vector
spaces.

August 6, 2015 38/132

Definition (Matrix)

A matrix is a linear transformation between finite dimensional vector
spaces.

Definition (Forming a matrix)

Forming or assembling a matrix means defining it’s action in terms of
entries (usually stored in a sparse format).

August 6, 2015 38/132

How do | create matrices?

MatCreate (MPI_Comm, Mat =)
MatSetSizes (Mat, int m, int n, int M, int N)
MatSetType (Mat, MatType typeName)
MatSetFromOptions (Mat)

o Can set the type at runtime
MatMPIBAIJSetPreallocation (Mat,...)

e important for assembly performance, more tomorrow
MatSetBlockSize (Mat, int bs)

o for vector problems
MatSetValues (Mat, ...)

o MUST be used, but does automatic communication
@ MatSetValuesLocal (), MatSetValuesStencil ()
@ MatSetValuesBlocked()

August 6, 2015 39/132

Matrix Storage Layout

@ Each process locally owns a submatrix of contiguous global rows
@ Each submatrix consists of diagonal and off-diagonal parts

@ diagonal blocks

proc 0 m offdiagonal blocks

proc 1
proc 2
proc 3

proc 4

proc 5

@ MatGetOwnershipRange (Mat A,int #*start,int =*end)
start: first locally owned row of global matrix
end-1: last locally owned row of global matrix

August 6, 2015 40/132

Matrix Assembly

@ A three step process
e Each process sets or adds values
@ Begin communication to send values to the correct process
o Complete the communication
@ MatSetValues (Mat A, m, rows[], n, cols[],
values[], mode)
@ mode is either INSERT_VALUES or ADD_VALUES
o Logically dense block of values
@ Two phase assembly allows overlap of communication and
computation
@ MatAssemblyBegin (Mat m, type)
@ MatAssemblyEnd (Mat m, type)
o type is either MAT_FLUSH_ASSEMBLY or
MAT_FINAL_ASSEMBLY

August 6, 2015 41/132

Matrix Assembly

@ A three step process
e Each process sets or adds values
@ Begin communication to send values to the correct process
o Complete the communication
@ MatSetValues (Mat A, m, rows[], n, cols[],
values[], mode)
@ mode is either INSERT_VALUES or ADD_VALUES
o Logically dense block of values
@ Two phase assembly allows overlap of communication and
computation
@ MatAssemblyBegin (Mat m, type)
@ MatAssemblyEnd (Mat m, type)
o type is either MAT_FLUSH_ASSEMBLY or
MAT_FINAL_ASSEMBLY
@ For vector problems
MatSetValuesBlocked (Mat A, m, rows[],
n, cols[], values([], mode)
@ The same assembly code can build matrices of different format

One Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

v[0] = -1.0; v[1l] = 2.0; v[2] = -1.0;
if (rank == 0) {
for (row = 0; row < N; row++) {
cols[0] = row—-1; cols[l] = row; cols[2] = rowtl;
if (row == 0) {
MatSetValues (A, 1, &row, 2, &cols[1],&v([1], INSERT_VALUES)
} else if (row == N-1) {
MatSetValues (A, 1, &row,2,cols, v, INSERT_VALUES) ;
} else {

MatSetValues (A, 1, &row, 3,cols, v, INSERT_VALUES) ;

}
MatAssemblyBegin (A, MAT_FINAL_ASSEMBLY) ;

MatAssemblyEnd (A, MAT_FINAL_ASSEMBLY) ;

August 6, 2015 42/132

A Better Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

v[0] = -1.0; v[1l] = 2.0; v[2] = —-1.0;
for (row = start; row < end; rowt+) {
cols[0] = row—1; cols[l] = row; cols[2] = rowt+l;
if (row == 0) {
MatSetValues (A, 1, &row, 2, &cols[1],&v[1], INSERT_VALUES) ;
} else if (row == N-1) {
MatSetValues (A, 1, &row, 2, cols, v, INSERT_VALUES) ;
} else {

MatSetValues (A, 1, &row, 3,cols, v, INSERT_VALUES) ;
}

MatAssemblyBegin (A, MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd (A, MAT_FINAL_ASSEMBLY) ;

August 6, 2015 43/132

Matrix Memory Preallocation

@ PETSc sparse matrices are dynamic data structures
@ can add additional nonzeros freely
@ Dynamically adding many nonzeros
@ requires additional memory allocations
e requires copies
e can kill performance
@ Memory preallocation provides

o the freedom of dynamic data structures
@ good performance

@ Easiest solution is to replicate the assembly code

e Remove computation, but preserve the indexing code
o Store set of columns for each row

@ Call preallocation routines for all datatypes

@ MatSegAIJSetPreallocation()
@ MatMPIBAIJSetPreallocation ()
@ Only the relevant data will be used

August 6, 2015 44 /132

Sequential Sparse Matrices

MatSegAIJSetPreallocation (Mat A, int nz, int nnz[])

nz: expected number of nonzeros in any row
nnz(i): expected number of nonzeros in row i

August 6, 2015 45/132

Parallel Sparse Matrices

MatMPIAIJSetPreallocation (Mat A, int dnz, int
dnnz[],
int onz, int onnz[])

dnz: expected number of nonzeros in any row in the diagonal block
dnnz(i): expected number of nonzeros in row i in the diagonal block

onz: expected number of nonzeros in any row in the offdiagonal portior
onnz(i): expected number of nonzeros in row i in the offdiagonal portion

August 6, 2015 46/132

Verifying Preallocation

@ Use runtime options
-mat_new_nonzero_location_err
-mat_new_nonzero_allocation_err

@ Use runtime option —-info

@ Output:
[proc #] Matrix size: %d X %d; storage space:
%$d unneeded, %d used
[proc #] Number of mallocs during MatSetValues ()
is %d

[merlin] mpirun ex2 -log_info

[0]MatAssemblyEnd_SeqAIJ:Matrix size: 56 X 56; storage space:

[0] 310 unnheeded, 250 used

[0]MatAssemblyEnd_ SquIJ Number of mallocs during MatSetValues() is 0
[0]MatAssemblyEnd_SeqAIJ:Most nonzeros in any row is 5

[0]Mat_ATJ_CheckInode: Found 56 nodes out of 56 rows. Not using Inode routine
[0]Mat_ATJ_ CheckIncode: Found 56 nodes out of 56 rows. Not using Inode routine
Horm of error 0.000156044 iterations 6

[0]PetscFinalize :PETSce successfully ended!

August 6, 2015 47 /132

Matrix Polymorphism

The PETSc Mat has a single user interface,
@ Matrix assembly
@ MatSetValues ()
@ Matrix-vector multiplication
@ MatMult ()
@ Matrix viewing
@ MatView ()

but multiple underlying implementations.
@ AlJ, Block AlJ, Symmetric Block AlJ,
@ Dense, Elemental
@ Matrix-Free
@ etc.
A matrix is defined by its interface, not by its data structure.

August 6, 2015 48/132

Block and symmetric formats

e BAIJ

o Like AlJ, but uses static block size
o Preallocation is like AlJ, but just one index per block

@ SBAIJ

e Only stores upper triangular part

e Preallocation needs number of nonzeros in upper triangular
parts of on- and off-diagonal blocks

@ MatSetValuesBlocked()

o Better performance with blocked formats

o Also works with scalar formats, if Mat SetBlockSize () was called

o Variants MatSetValuesBlockedLocal (),
MatSetValuesBlockedStencil ()

e Change matrix format at runtime, don’t need to touch assembly
code

August 6, 2015 49/132

Performance of blocked matrix formats

Format | Core 2, 1 process | Opteron, 4 processes

Kernel AlJ ‘ BAIJ ‘ SBAIJ | AlJ ‘ BAIJ ‘ SBAIJ
MatMult 812 | 985 | 1507 | 2226 | 2918 | 3119
MatSolve 718 | 957 955 | 1573 | 2869 | 2858

Throughput (Mflop/s) for different matrix formats on Core 2 Duo
(P8700) and Opteron 2356 (two sockets). Mat Solve is a forward- and
back-solve with incomplete Cholesky factors. The AlJ format is using
“‘inodes” which unrolls across consecutive rows with identical nonzero
pattern (pairs in this case).

August 6, 2015 50/132

Objects

Mat A;

PetscInt m,n,M,N;

MatCreate (comm, &A) ;

MatSetSizes (A,m,n,M,N) ; /* or PETSC_DECIDE %,
MatSetOptionsPrefix (A, "foo_");
MatSetFromOptions (A) ;

/+* Use A */

MatView (A, PETSC_VIEWER_DRAW_WORLD) ;

MatDestroy (A) ;

@ Mat is an opaque object (pointer to incomplete type)
e Assignment, comparison, etc, are cheap
@ What’s up with this “Options” stuff?
o Allows the type to be determined at runtime: —foo_mat_type
sbaij
o Inversion of Control similar to “service locator”,
related to “dependency injection”

@ Other options (performance and semantics) can’be changed at
August 6, 2015 51/132

Matrices, redux

What are PETSc matrices?
@ Linear operators on finite dimensional vector spaces.

August 6, 2015 52/132

Matrices, redux

What are PETSc matrices?
@ Linear operators on finite dimensional vector spaces.
Fundamental objects for storing stiffness matrices and Jacobians

°
@ Each process locally owns a contiguous set of rows
@ Supports many data types

e AlJ, Block AlJ, Symmetric AlJ, Block Diagonal, etc.
Supports structures for many packages

o MUMPS, Spooles, SuperLU, UMFPack, DSCPack

August 6, 2015 52/132

Why Are PETSc Matrices That Way?

@ No one data structure is appropriate for all problems
o Blocked and diagonal formats provide significant performance
benefits
e PETSc has many formats and makes it easy to add new data
structures

@ Assembly is difficult enough without worrying about partitioning

o PETSc provides parallel assembly routines

@ Achieving high performance still requires making most operations
local

e However, programs can be incrementally developed.

@ MatPartitioning and MatOrdering can help

@ Matrix decomposition in contiguous chunks is simple

o Makes interoperation with other codes easier
o For other ordering, PETSc provides “Application Orderings” (AQ)

August 6, 2015 53/132

MatGetLocalSubMatrix () spaces

@ Newton method for F(x) = 0 solves

J(x)ox = —F(x)

Jaa Jab Jac
J=|Jdpa JIob JInbe
Jca Jcb Jcc

@ Conceptually, there are three spaces in parallel

V' “monolithic” globally assembled space

V; “split” global space for a single physics i

V; Local space (with ghosts) for a single physcs i

V [1, Vi Concatenation of all single-physics local spaces
@ Different components need different relationships
V; — V field-split
V — V coupled Neumann domain decomposition methods

V; natural language for modular residual evaluation and assembly

August 6, 2015 54/132

MatGetLocalSubMatrix (Mat A, IS rows, IS cols,Mat =*B);
@ Primarily for assembly
@ B is not guaranteed to implement MatMult
e The communicator for B is not specified,
only safe to use non-collective ops (unless you check)
@ IS represents an index set, includes a block size and
communicator

@ MatSetValuesBlockedLocal () is implemented

@ MatNest returns nested submatrix, no-copy

@ No-copy for Neumann-Neumann formats
(unassembled across procs, e.g. BDDC, FETI-DP)

@ Most other matrices return a lightweight proxy Mat

@ COMM_SELF
Values not copied, does not implement MatMult
Translates indices to the language of the parent matrix
Multiple levels of nesting are flattened

August 6, 2015 55/132

MatGetLocalSubMatrix () spaces

V' Globally assembled space

V; Global space for a single physics i
V; Local space (with ghosts) for a single physcs i

V TJ, Vi Concatenation of all single-physics local spaces

@ Multiple physics x = [xa, Xp, X¢]
/i Map indices from V; to V.
R; Global physics restriction R; : V — V;

Rix = x[lj] = xi

_I; Map indices from V; to V;
R; Extract local single-physics part from global single-physics

Rixi = xi[l]] = X;i

J; Map indices from V, to V

MatGetLocalSubMatrix () spaces

@ Globally assembled coupled matrix in terms of assembled
single-physics blocks

J=Y R/JR
i

e Language of Schwarz and fieldsplit

@ Assembled single-physics blocks in terms of local single-physics
matrices N
Jj = R; JjR;

e Language of assembly and Neumann/FETI| domain decomposition
@ MatSetValuesLocal ()

August 6, 2015 57/132

Setting Values on Regular Grids

PETSc provides

MatSetValuesStencil (Mat A, m, MatStencil idxm[], n, MatStencil idxn/[],
PetscScalar values[], InsertMode mode)

@ Each row or column is actually a MatStencil

e This specifies grid coordinates and a component if necessary
e Can imagine for unstructured grids, they are vertices

@ The values are the same logically dense block in row/col

August 6, 2015 58/132

DMDA matrices

@ DMCreateMatrix(DM da,Mat *A)
@ Evaluate only the local portion
e No nice local array form without copies

@ Use MatSetValuesStencil () to convert (i, j, k) toindices

@ make NP=2 EXTRA_ARGS="-run test -da_grid_x 10 -da_grid_y 10

-mat_view_draw -draw_pause -1" runbratu

@ make NP=2 EXTRA_ARGS="-run test -dim 3 -da_grid_x 5 -da_grid_y 5

—-da_grid_z 5 -mat_view_draw -draw_pause -1" runbratu

August 6, 2015 59/132

Interactions among composable linear, nonlinear, and

timestepping solvers

TS
[(ARKIMEX) (Rosenbrock- W) (SSPRK) (Pseudo)

g(x Z + axX, t)_O

SNES

Newton line search VISS VIRS Multi-stage
(NGMRES) (NRuchardson) M (shetr)
npc

reduced

KSP
/i R(GMF{ES) (FGMRES) (IBlCGStab) (ce) (Preonly)

sub
Sp“t levels ne
o o () Gom (D)) ()]
overlap Sub/relax
v
Mat factor Vec

(AW) (sBA) (Nest) (cusp)| |(I\I/IPI) (Ghost) (cubA)

August 6, 2015

60/132

Main Routine

‘ Timestepping Solvers (TS) ‘

{

‘ Nonlinear Solvers (SNES) ‘

+

[Linear Solvers (KSP) J

: PETSc
v [Preconditioners (PC) J

A

Application Function Jacobian P i
s ostprocessing
Initialization Evaluation Evaluation F °

@ IGA used to evaluate nonlinear residuals

@ PETSc DA used to manage parallelism.

@ Adaptive time integration using method of lines.
e Generalized o method from PETSc Ts.

August 6, 2015 61/132

Nonlinear solvers in PETSc SNES

LS, TR Newton-type with line search and trust region
NRichardson Nonlinear Richardson, usually preconditioned

VIRS, VIRSAUG, and VISS reduced space and semi-smooth methods
for variational inequalities

QN Quasi-Newton methods like BFGS
NGMRES Nonlinear GMRES
NCG Nonlinear Conjugate Gradients
SORQN SOR quasi-Newton
GS Nonlinear Gauss-Seidel sweeps
FAS Full approximation scheme (nonlinear multigrid)

MS Multi-stage smoothers, often used with FAS for hyperbolic
problems

Shell Your method, often used as a (nonlinear) preconditioner

August 6, 2015 62/132

Basic Solver Usage

We will illustrate basic solver usage with SNES.

@ Use SNESSetFromOptions () S0 that everything is set
dynamically

o Use —snes_type to set the type or take the default

@ Override the tolerances
@ Use -snes_rtol and -snes_atol

@ View the solver to make sure you have the one you expect
@ Use -snes_view

@ For debugging, monitor the residual decrease

@ Use -snes_monitor
e Use -ksp_monitor to see the underlying linear solver

August 6, 2015 63/132

Newton iteration: workhorse of SNES

@ Standard form of a nonlinear system
F(uy=0
@ [teration
Solve: Juyw=—-F(u
Update: ut«—u+w

@ Quadratically convergent near a root:
‘Un—H _ U*‘ e O(’Un _ U*|2
@ Picard is the same operation with a different J(u)

Example (Nonlinear Poisson)

Fluy=0 ~ -V [1+¥)Vu]l-f=0
~V-[(1+ v®)Vw + 2UWVU}

August 6, 2015 64/132

SNES Paradigm

The SNES interface is based upon callback functions
@ FormFunction (), setby SNESSetFunction ()

@ FormJacobian (), setby SNESSetJacobian ()

When PETSc needs to evaluate the nonlinear residual F(x),
@ Solver calls the user’s function

@ User function gets application state through the ctx variable
o PETSc never sees application data

August 6, 2015 65/132

Nonlinear Solvers

Newton and Picard Methods

@ Using PETSc linear algebra, just add:
@ SNESSetFunction (SNES snes, Vec r, residualFunc,

void *ctx)
@ SNESSetJacobian (SNES snes, Mat A, Mat M, jacFunc,

void *ctx)
@ SNESSolve (SNES snes, Vec b, Vec x)
@ Can access subobjects
@ SNESGetKSP (SNES snes, KSP xksp)
@ Can customize subobjects from the cmd line
o Set the subdomain preconditioner to ILU with —sub_pc_type ilu

August 6, 2015 66 /132

SNES Function

The user provided function which calculates the nonlinear residual has
signature

PetscErrorCode (xfunc) (SNES snes,Vec x,Vec r,void xctx)

x: The current solution

r: The residual
ctx: The user context passed to SNESSetFunction ()
e Use this to pass application information, e.g. physical constants

August 6, 2015 67/132

SNES Jacobian

The user provided function that calculates the Jacobian has signature

PetscErrorCode (xfunc) (SNES snes,Vec x,Mat J,
Mat Jpre,void xctx)

x: The current solution
J: The Jacobian
Jpre: The Jacobian preconditioning matrix (possibly J itself)
ctx: The user context passed to SNESSetFunction ()
o Use this to pass application information, e.g. physical constants
Alternatively, you can use
@ a builtin sparse finite difference approximation (“coloring”)
@ automatic differentiation (ADIC/ADIFOR)

August 6, 2015 68/132

SNES Example

Driven Cavity

Solution Components

-
B
-
. @ Velocity-vorticity formulation
velocity: u velocity: v

@ Flow driven by lid and/or bouyancy
@ Logically regular grid

- e Parallelized with DMDA

@ Finite difference discretization

VOI‘tiCity: temperature; T o Authored by DaV|d KeyeS

src/snes/examples/tutorials/ex19.c

August 6, 2015 69/132

SNES Example

Driven Cavity Application Context

/* Collocated at each node */
typedef struct ({

PetscScalar u,v,omega, temp;
} Field;

typedef struct {
/+ physical parameters x/
PassiveReal lidvelocity,prandtl,grashof;
/* color plots of the solution x/
PetscTruth draw_contours;

} AppCtx;

August 6, 2015 70/132

SNES Example

DrivenCavityFunction (SNES snes, Vec X, Vec F, wvoid xptr) {

AppCtx xuser = (AppCtx =*) ptr;

/+ local starting and ending grid points =/

PetscInt istart, iend, jstart, jend;

PetscScalar ~f; /* local vector data =/
PetscReal grashof = user->grashof;

PetscReal prandtl = user->prandtl;

PetscErrorCode ierr;

/+* Code to communicate nonlocal ghost point data */
DMDAVecGetArray (da, F, &f);

/% Loop over local part and assemble into f[idxloc] x/
VA V4

DMDAVecRestoreArray(da, F, &f);
return 0O;

August 6, 2015 71/132

DMDA Local Function

User provided function calculates the nonlinear residual (in 2D)

(#1func) (DMDALocalInfo xinfo, PetscScalar #=+x, PetscScalar +*r, void *ctx)

info: All layout and numbering information
x: The current solution
o Notice that it is a multidimensional array

r: The residual
ctx: The user context passed to DASetLocalFunction ()

The local DMDA function is activated by calling

SNESSetFunction(snes, r, SNESDAFormFunction, ctx)

August 6, 2015 72/132

SNES Example with local evaluation

PetscErrorCode DrivenCavityFuncLocal (DMDALocalInfo xinfo,
Field »xx,Field *xf,void =xctx) {
/% Handle boundaries ... */
/% Compute over the interior points */
for(j = info->ys; j < info->ys+info->ym; Jj++) {
for (i = info->xs; 1 < info->xs+info->xm; i++) {
/% convective coefficients for upwinding ... */
/+ U velocity =/

u = x[J1[i].u;

uxx = (2.0%xu - x[jl[i-1].u - x[]J][1i+1].u)~hydhx;

uyy = (2.0+xu - x[J-11[1i].u — x[J+1]1[i].u)~hxdhy;
fl3][i]l.u = uxx + uyy — .5+ (x[Jj+1]1[1i].omega-x[]j-1][1].omeg
/+ V velocity, Omega ... */

/+ Temperature */

u = x[Jj][i].temp;

uxx = (2.0*u — x[j][i-1].temp - x[J][i+1].temp) ~h
uyy = (2.0*xu - x[j-1]1[i].temp - x[j+1][1i].temp) ~h:
fl3][i].temp = uxx + uyy + prandtl

* (vxp* (u — x[J][i-1].temp) + vxm* (x[Jj][1i+1].temp — u)
+ (vypx(u - x[j-1][i].temp) + vymx (xfj+1][i]=temp -)

August 6, 2015 73/132

DMDA Local Jacobian

User provided function calculates the Jacobian (in 2D)

(#1func) (DMDALocalInfo xinfo, PetscScalar *+x, Mat J, wvoid xctx)

info: All layout and numbering information
x: The current solution
J: The Jacobian
ctx: The user context passed to DASetLocalJacobian ()

The local DMDA function is activated by calling

SNESSetJacobian (snes, J, J, SNESDAComputeJacobian, ctx)

August 6, 2015 74/132

Running the driven cavity

@ ./ex19 -lidvelocity 100 —grashof 1e2 -da_grid_x 16
—da_grid_y 16 -snes_monitor -snes_view -da_refine 2

@ ./ex19 -lidvelocity 100 —grashof 1led4 -da_grid_x 16
—da_grid_y 16 —-snes_monitor -snes_view —-da_refine 2

@ ./ex19 -lidvelocity 100 —grashof 1e5 -da_grid_x 16
—da_grid_y 16 -snes_monitor -snes_view —-da_refine 2

-pc_type lu

August 6, 2015 75/132

Running the driven cavity

@ ./ex19 -lidvelocity 100 —-grashof le2 -da_grid_x 16
—-da_grid_y 16 -snes_monitor -snes_view —-da_refine 2
lid velocity = 100, prandtl # = 1, grashof # = 1000
0 SNES Function norm 7.682893957872e+02

SNES Function norm 6.574700998832e+02

SNES Function norm 5.285205210713e+02

SNES Function norm 3.770968117421e+02

SNES Function norm 3.030010490879e+02

SNES Function norm 2.655764576535e+00

SNES Function norm 6.208275817215e-03

SNES Function norm 1.191107243692e-07

Number of SNES iterations = 7

~N o 0w N

@ ./ex19 -lidvelocity 100 —grashof 1le4 -da_grid_x 16
—da_grid_y 16 —-snes_monitor -snes_view -da_refine 2

@ ./ex19 -lidvelocity 100 -grashof 1e5 -da_grid_x 16
—da_grid_y 16 —-snes_monitor -snes_view —-da_refine 2
-pc_type 1lu

August 6, 2015 75/132

Running the driven cavity

@ ./ex19 -lidvelocity 100 —-grashof le2 -da_grid_x 16
—-da_grid_y 16 —-snes_monitor -snes_view —-da_refine 2

@ ./ex19 -lidvelocity 100 -grashof le4 -da_grid_x 16
—da_grid_y 16 —-snes_monitor -snes_view —-da_refine 2
1lid velocity = 100, prandtl # = 1, grashof # = 10000
0 SNES Function norm 7.854040793765e+02

SNES Function norm 6.630545177472e+02

SNES Function norm 5.195829874590e+02

SNES Function norm 3.608696664876e+02

2.458925075918e+02

SNES Function norm 1.811699413098e+00

SNES Function norm 4.688284580389e-03

SNES Function norm 4.417003604737e-08

Number of SNES iterations = 7

@ ./ex19 -lidvelocity 100 -grashof 1e5 -da_grid_x 16
—da_grid_y 16 —-snes_monitor -snes_view —-da_refine 2
-pc_type 1lu

SNES Function norm

~ oUW N

August 6, 2015 75/132

Running the driven cavity

@ ./ex19 -lidvelocity 100 —-grashof le2 -da_grid_x 16
—-da_grid_y 16 —-snes_monitor -snes_view -da_refine 2

@ ./ex19 -lidvelocity 100 —-grashof le4 -da_grid_x 16
—da_grid_y 16 —-snes_monitor -snes_view -da_refine 2
@ ./ex19 -lidvelocity 100 —-grashof 1e5 -da_grid_x 16
—-da_grid_y 16 —-snes_monitor -snes_view -da_refine 2
-pc_type lu
lid velocity = 100, prandtl # = 1, grashof # = 100000
0 SNES Function norm 1.809960438828e+03

1 SNES Function norm 1.678372489097e+03
2 SNES Function norm 1.643759853387e+03
3 SNES Function norm 1.559341161485e+03
4 SNES Function norm 1.557604282019e+03
5 SNES Function norm 1.510711246849e+03
6 SNES Function norm 1.500472491343e+03
7 SNES Function norm 1.498930951680e+03
8 SNES Function norm 1.498440256659e+03

August 6, 2015 75/132

Running the driven cavity

@ ./ex19 -lidvelocity 100 —grashof 1e2 -da_grid_x 16
—da_grid_y 16 -snes_monitor -snes_view -da_refine 2

@ ./ex19 -lidvelocity 100 —grashof 1led4 -da_grid_x 16
—da_grid_y 16 —-snes_monitor -snes_view —-da_refine 2

@ ./ex19 -lidvelocity 100 —grashof 1e5 -da_grid_x 16
—da_grid_y 16 -snes_monitor -snes_view —-da_refine 2
-pc_type lu

@ Uh oh, we have convergence problems

@ Does -snes_grid_sequence help?

August 6, 2015 75/132

Exercise 5

Run SNES Example 5 using come custom options.

cd SPETSC_DIR/src/snes/examples/tutorials
make exb

mpiexec ./ex5 —-snes_monitor -snes_view
mpiexec ./ex5 —-snes_type tr —-snes_monitor
—-snes_view

mpiexec ./ex5 —-ksp_monitor —-snes_monitor
-snes_view

mpiexec ./ex5 —-pc_type Jjacobi —-ksp_monitor
—-snes_monitor —-snes_view

© 0 0 00060

mpiexec ./ex5 -ksp_type bicg —-ksp_monitor
—-snes_monitor —-snes_view

August 6, 2015 76 /132

Sample output (SNES and KSP)

SNES Object: 1 MPI processes
type: 1ls
line search wvariant: CUBIC
alpha=1.000000000000e-04, maxstep=1.000000000000e+08,
damping factor=1.000000000000e+00
maximum iterations=50, maximum function evaluations=10000
tolerances: relative=1e-08, absolute=1le-50,
total number of linear solver iterations=5
total number of function evaluations=6
KSP Object: 1 MPI processes
type: gmres

minlamb

solution=1e-08

GMRES: restart=30, using Classical (unmodified) Gram-Schmid
GMRES: happy breakdown tolerance 1le-30
maximum iterations=10000, initial guess is zero
tolerances: relative=1le-05, absolute=le-50, divergence=10000
left preconditioning

using PRECONDITIONED norm type for convergence test

August 6, 2015 77/132

Multiphysics Assembly Code: Residuals

FormFunction_Coupled(SNES snes,Vec X,Vec F,void =xctx) {

struct UserCtx *user = ctx;

V2
SNESGetDM (snes, &pack) ;
DMCompositeGetEntries (pack, &dau, &dak) ;
DMDAGetLocalInfo (dau, &infou) ;
DMDAGetLocalInfo (dak, &infok) ;
DMCompositeScatter (pack, X, Uloc,Kloc);
DMDAVecGetArray (dau, Uloc, &u) ;
DMDAVecGetArray (dak,Kloc, &k) ;
DMCompositeGetAccess (pack, F, &Fu, &Fk) ;
DMDAVecGetArray (dau, Fu, &fu) ;
DMDAVecGetArray (dak, Fk, &fk);
FormFunctionLocal_U (user, &infou,u,k, fu); // u residual with k g
FormFunctionLocal_K(user, &¢infok,u,k, fk); // k residual with u g
DMDAVecRestoreArray (dau, Fu, &fu) ;
// More restores

August 6, 2015 78/132

Multiphysics Assembly Code: Jacobians

FormJacobian_Coupled (SNES snes,Vec X,Mat J,Mat B,...) {
// Access components as for residuals
MatGetLocalSubMatrix (B,1s[0],is[0], &Buu)
MatGetLocalSubMatrix (B,is[0],is[1], &Buk);
MatGetLocalSubMatrix (B,is[1],1is[0], &Bku);

(11,)
)

’

’

MatGetLocalSubMatrix (B,is[1],1is[1], &Bkk
FormJacobianLocal_U (user, &infou, u, k, Buu) ; // single phy
FormJacobianLocal_UK (user, &infou, sinfok,u, k,Buk); // coupling
FormJacobianLocal_KU (user, &infou, &¢infok,u, k,Bku); // coupling
FormJacobianLocal_K (user, &¢infok, u, k, Bkk) ; // single phy
MatRestoreLocalSubMatrix (B,is[0],1s[0], &Buu);

// More restores

@ Assembly code is independent of matrix format
@ Single-physics code is used unmodified for coupled problem
@ No-copy fieldsplit:
—-pack_dm_mat_type nest -pc_type fieldsplit
@ Coupled direct solve:

—-pack_dm_mat_type aij -pc_type lu -pc_factor_mat_solver_package mumps

August 6, 2015 79/132

Finite Difference Jacobians

PETSc can compute and explicitly store a Jacobian via 1st-order FD
@ Dense

o Activated by —snes_fd
@ Computed by SNESDefaultComputeJacobian ()

@ Sparse via colorings
o Activated by -snes_fd_color (default when no Jacobian set and
using DM)
@ Coloring is created by MatFDColoringCreate ()
o Computed by SNESDefaultComputeJacobianColor ()
Can also use Matrix-free Newton-Krylov via 1st-order FD

@ Activated by —snes_mf without preconditioning

@ Activated by —snes_mf_operator with user-defined
preconditioning

@ Uses preconditioning matrix from SNESSetJacobian ()

August 6, 2015 80/132

SNES Variants

e Line search strategies
e Trust region approaches
e Picard iteration

e Variational inequality approaches

August 6, 2015 81/132

Why isn’t SNES converging?

@ The Jacobian is wrong (maybe only in parallel)
@ Check with —snes_type test and -snes_mf_operator
-pc_type 1lu
@ The linear system is not solved accurately enough
o Check with -pc_type 1u
@ Check ~ksp_monitor_true_residual, try right preconditioning
@ The Jacobian is singular with inconsistent right side
@ Use MatNullSpace to inform the Ksp of a known null space
o Use a different Krylov method or preconditioner
@ The nonlinearity is just really strong

@ Run with -snes_linesearch_monitor

o Try using trust region instead of line search —snes_type
newtontr

e Try grid sequencing if possible

e Use a continuation

August 6, 2015 82/132

SNES Test

@ PETSc can compute a finite difference Jacobian and compare it to
yours
@ —snes_type test
o Is the difference significant?
@ -snes_type test —-snes_test_display
o Are the entries in the star stencil correct?
Find which line has the typo
$ git checkout 9-newton-correct

Check with —snes_type test

and -snes_mf_operator -pc_type lu

August 6, 2015 83/132

Nonlinear solvers in PETSc SNES

LS, TR Newton-type with line search and trust region
NRichardson Nonlinear Richardson, usually preconditioned
VIRS, VISS reduced space and semi-smooth methods for variational
inequalities
QN Quasi-Newton methods like BFGS
NGMRES Nonlinear GMRES
NCG Nonlinear Conjugate Gradients
GS Nonlinear Gauss-Seidel/multiplicative Schwarz sweeps
FAS Full approximation scheme (nonlinear multigrid)

MS Multi-stage smoothers, often used with FAS for hyperbolic
problems

Shell Your method, often used as a (nonlinear) preconditioner

August 6, 2015 84/132

Overwhelmed with choices

@ If you have a hard problem, no black-box solver will work well
@ Everything in PETSc has a plugin architecture

e Put in the “special sauce” for your problem

e Your implementations are first-class
@ PETSc exposes an algebra of composition at runtime

Build a good solver from existing components, at runtime
Multigrid, domain decomposition, factorization, relaxation, field-split
Choose matrix format that works best with your preconditioner

(]
(]
]
e structural blocking, Neumann matrices, monolithic versus nested

August 6, 2015 85/132

Questions to ask when you see a matrix

@ What do you want to do with it?
o Multiply with a vector
e Solve linear systems or eigen-problems
@ How is the conditioning/spectrum?
e distinct/clustered eigen/singular values?
e symmetric positive definite (¢(A) c R*)?
e nonsymmetric definite (o(A) C {z € C: R[z] > 0})?
o indefinite?
© How dense is it?
@ block/banded diagonal?
@ sparse unstructured?
o denser than we'd like?
© Is there a better way to compute Ax?

@ Is there a different matrix with similar spectrum, but nicer
properties?
© How can we precondition A?

August 6, 2015 86/132

Questions to ask when you see a matrix

@ What do you want to do with it?
o Multiply with a vector
e Solve linear systems or eigen-problems
@ How is the conditioning/spectrum?
e distinct/clustered eigen/singular values?
e symmetric positive definite (¢(A) c R*)?
e nonsymmetric definite (o(A) C {z € C: R[z] > 0})?
o indefinite?
© How dense is it?
@ block/banded diagonal?
@ sparse unstructured?
o denser than we'd like?
© Is there a better way to compute Ax?

@ Is there a different matrix with similar spectrum, but nicer
properties?
© How can we precondition A?

August 6, 2015 86/132

Preconditioning

Definition (Preconditioner)

A preconditioner P is a method for constructing a matrix
P~ =P(A, Ap) using a matrix A and extra information A, such that
the spectrum of P—1A (or AP~ 1) is well-behaved.

e P~'isdense, P is often not available and is not needed

@ Aisrarely used by P, but A, = Ais common

@ A, is often a sparse matrix, the “preconditioning matrix”

@ Matrix-based: Jacobi, Gauss-Seidel, SOR, ILU(k), LU

@ Parallel: Block-Jacobi, Schwarz, Multigrid, FETI-DP, BDDC

@ Indefinite: Schur-complement, Domain Decomposition, Multigrid

August 6, 2015 87/132

Preconditioning

Idea: improve the conditioning of the Krylov operator
@ Left preconditioning

(P'A)x =P b
{P'b,(PTAP b, (P AP b,...}
@ Right preconditioning
(AP~"Px =b
{b,(P~'A)b, (P 1A)?b,...}

@ The product P~'A or AP~ is not formed.

Definition (Preconditioner)

A preconditioner P is a method for constructing a matrix (just a linear
function, not assembled!) P~' = P(A, Ap) using a matrix A and extra
information Ap, such that the spectrum of P~1A (or AP~) is

August 6, 2015 88/132

Linear Solvers

@ Use a direct method (small problem size)
@ Precondition with Schur Complement method
@ Use multigrid approach

August 6, 2015 89/132

What about direct linear solvers?

Scaling of 3D Stokes solvers

10%F T T
F s FGMRES/Schur/AMG slope=1.008
s GMRES/ILU slope=1.462
e MUMPS direct solve slope=1.628
w
©
5 10%F |
o £ B
ol [
@
@
£
c
2
] 10" .
il [
10 L T S| L L
O 10° 108

Degrees of freedom

@ By all means, start with a direct solver
@ Direct solvers are robust, but not scalable
@ 2D: O(n'") flops, O(nlog n) memory.

@ 3D: O(n?) flops, O(n*/3) memor
August 6, 2015 90/132

3rd Party Solvers in PETSc

@ Sequential LU

o ILUDT (SPARSEKITZ2, Yousef Saad, U of MN)
EUCLID & PILUT (Hypre, David Hysom, LLNL)
ESSL (IBM)
SuperLU (Jim Demmel and Sherry Li, LBNL)
Matlab
UMFPACK (Tim Davis, U. of Florida)

o LUSOL (MINOS, Michael Saunders, Stanford)
©Q Parallel LU

o MUMPS (Patrick Amestoy, IRIT)

o SPOOLES (Cleve Ashcroft, Boeing)

o SuperLU_Dist (Jim Demmel and Sherry Li, LBNL)
© Parallel Cholesky

o DSCPACK (Padma Raghavan, Penn. State)

©Q XYTIib - parallel direct solver (Paul Fischer and Henry Tufo, ANL)

http://www.mcs.anl.gov/petsc/petsc-as/documentation/linearsolvertable.html

3rd Party Preconditioners in PETSc

@ Parallel ICC

o BlockSolve95 (Mark Jones and Paul Plassman, ANL)
© Parallel ILU

o BlockSolve95 (Mark Jones and Paul Plassman, ANL)
© Parallel Sparse Approximate Inverse

e Parasails (Hypre, Edmund Chow, LLNL)

@ SPAI 3.0 (Marcus Grote and Barnard, NYU)
@ Sequential Algebraic Multigrid

o RAMG (John Ruge and Klaus Steuben, GMD)

o SAMG (Klaus Steuben, GMD)
@ Parallel Algebraic Multigrid

e Prometheus (Mark Adams, PPPL)
o BoomerAMG (Hypre, LLNL)
e ML (Trilinos, Ray Tuminaro and Jonathan Hu, SNL)

August 6, 2015 91/132

http://www.mcs.anl.gov/petsc/petsc-as/documentation/linearsolvertable.html

The Great Solver Schism: Monolithic or Split?

Split
Monolithic @ Physics-split Schwarz

@ Direct solvers (based on relaxation)

@ Coupled Schwarz @ Physics-split Schur

@ Coupled Neumann-Neumann (based on factorization)
(need unassembled matrices) ° approximate commutators

SIMPLE, PCD, LSC

@ Coupled multigrid e segregated smoothers

X Need to understand local e Augmented Lagrangian
spectral and compatibility e “parabolization” for stiff
properties of the coupled DGR
system X Need to understand global

coupling strengths

@ Preferred data structures depend on which method is used.
@ Interplay with geometric multigrid.

August 6, 2015 92/132

Outlook on Solver Composition

@ Unintrusive composition of multigrid and block preconditioning

@ We can build many preconditioners from the literature
on the command line

@ User code does not depend on matrix format, preconditioning
method, nonlinear solution method, time integration method
(implicit or IMEX), or size of coupled system (except for driver).

In development

@ Distributive relaxation, Vanka smoothers

@ Algebraic coarsening of “dual” variables

@ Improving operator-dependent semi-geometric multigrid

@ More automatic spectral analysis and smoother optimization
@ Automated support for mixing analysis into levels)

August 6, 2015 93/132

Stokes example

The common block preconditioners for Stokes require only options:

(75)

August 6, 2015 94/132

The Stokes System

Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_fieldsplit_type additive PC
—fieldsplit_0_pc_type ml N

—fieldsplit_0_ksp_type preonly A O
—fieldsplit_1_pc_type Jjacobi O I

—fieldsplit_1_ksp_type preonly

Cohouet and Chabard, Some fast 3D finite element solvers for the generalized Stokes
problem, 1988.

August 6, 2015 94/132

Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit
-pc_fieldsplit_type PC
multiplicative

N\
—fieldsplit_0_pc_type hypre A B
—fieldsplit_0_ksp_type preonly

—fieldsplit_1_pc_type Jjacobi O I
—fieldsplit_1_ksp_type preonly

Elman, Multigrid and Krylov subspace methods for the discrete Stokes equations, 1994.

August 6, 2015 94/132

Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_fieldsplit_type schur PC
-fieldsplit_0_pc_type gamg ~
—fieldsplit_0_ksp_type preonly A 0

N
-fieldsplit_1_pc_type none O S
—fieldsplit_1_ksp_type minres

-pc_fieldsplit_schur_factorization_type diag
May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2008.

Olshanskii, Peters, and Reusken, Uniform preconditioners for a parameter dependent
saddle point problem with application to generalized Stokes interface equations, 2006.

August 6, 2015 94/132

Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_fieldsplit_type schur PC
-fieldsplit_0_pc_type gamg ~
—fieldsplit_0_ksp_type preonly A O

N
—-fieldsplit_1_pc_type none BT S
—fieldsplit_1_ksp_type minres

-pc_fieldsplit_schur_factorization_type lower

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2008.

August 6, 2015 94/132

Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_fieldsplit_type schur PC
-fieldsplit_0_pc_type gamg ~
—fieldsplit_0_ksp_type preonly A B

N\
—-fieldsplit_1_pc_type none O S
—fieldsplit_1_ksp_type minres
-pc_fieldsplit_schur_factorization_type upper

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2008.

August 6, 2015 94/132

Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_fieldsplit_type schur F)(:;
-fieldsplit_0_pc_type gamg ~
—fieldsplit_0_ksp_type preonly A B

—fieldsplit_1_pc_type lsc O é
LSC

—fieldsplit_1_ksp_type minres

-pc_fieldsplit_schur_factorization_type upper
May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2008.

Kay, Loghin and Wathen, A Preconditioner for the Steady-State N-S Equations, 2002.
Elman, Howle, Shadid, Shuttleworth, and Tuminaro, Block preconditioners based on
approximate commutators, 2006.

August 6, 2015 94/132

Stokes example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit
-pc_fieldsplit_type schur
—-pc_fieldsplit_schur_factorization_type full

PC

I 0\ [AO\/] A 1B
B'A-11)\o&5)\0o I

August 6, 2015 94/132

Stokes example

All block preconditioners can be embedded in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin

System on each Coarse Level
A B
R (BT O) P

August 6, 2015 95/132

Stokes example

All block preconditioners can be embedded in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin SI I Ioother

-mg_levels_pc_type fieldsplit

-mg_levels_pc_fieldsplit_type additive P(;

-mg_levels_fieldsplit_0_pc_type sor
N\
-mg_levels_fieldsplit_0_ksp_type preonly A O

-mg_levels_fieldsplit_1_pc_type jacobi
-mg_levels_fieldsplit_1_ksp_type preonly O I

August 6, 2015 95/132

Stokes example

All block preconditioners can be embedded in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin Smoother
-mg_levels_pc_type fieldsplit

-mg_levels_pc_fieldsplit_type
multiplicative P< ;
-mg_levels_fieldsplit_0_pc_type sor

N\
-mg_levels_fieldsplit_0_ksp_type preonly A B

-mg_levels_fieldsplit_1_pc_type jacobi
-mg_levels_fieldsplit_1_ksp_type preonly O I

August 6, 2015 95/132

Stokes example

All block preconditioners can be embedded in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin SI I Ioother

-mg_levels_pc_type fieldsplit

-mg_levels_pc_fieldsplit_type schur P‘ ;

-mg_levels_fieldsplit_0_pc_type sor A
-mg_levels_fieldsplit_0_ksp_type preonly A O

-mg_levels_fieldsplit_1_pc_type none
N\
-mg_levels_fieldsplit_1_ksp_type minres O S

-mg_levels_pc_fieldsplit_schur_factorization_type diag

August 6, 2015 95/132

Stokes example

All block preconditioners can be embedded in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin SI I Ioother

-mg_levels_pc_type fieldsplit

-mg_levels_pc_fieldsplit_type schur P‘ ;

-mg_levels_fieldsplit_0_pc_type sor A
-mg_levels_fieldsplit_0_ksp_type preonly A O

-mg_levels_fieldsplit_1_pc_type none

N\
-mg_levels_fieldsplit_1_ksp_type minres B T S

-mg_levels_pc_fieldsplit_schur_factorization_type lower

August 6, 2015 95/132

Stokes example

All block preconditioners can be embedded in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin SI I Ioother

-mg_levels_pc_type fieldsplit

-mg_levels_pc_fieldsplit_type schur P‘ ;

-mg_levels_fieldsplit_0_pc_type sor

N\
-mg_levels_fieldsplit_0_ksp_type preonly A B

-mg_levels_fieldsplit_1_pc_type none
N\
-mg_levels_fieldsplit_1_ksp_type minres O S

-mg_levels_pc_fieldsplit_schur_factorization_type upper

August 6, 2015 95/132

Stokes example

All block preconditioners can be embedded in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin SI I Ioother

-mg_levels_pc_type fieldsplit

-mg_levels_pc_fieldsplit_type schur P‘ ;

-mg_levels_fieldsplit_0_pc_type sor

N\
-mg_levels_fieldsplit_0_ksp_type preonly A B

-mg_levels_fieldsplit_1_pc_type lsc

N\
-mg_levels_fieldsplit_1_ksp_type minres O S

-mg_levels_pc_fieldsplit_schur_factorization_type upper

August 6, 2015 95/132

Relative effect of the blocks

Juu Jup JuE
Jeu Jep JEE

Juu Viscous/momentum terms, nearly symmetric, variable coefficionts,
anisotropy from Newton.

Jup Weak pressure gradient, viscosity dependence on pressure
(small), gravitational contribution (pressure-induced density
variation). Large, nearly balanced by gravitational forcing.

Jue Viscous dependence on energy, very nonlinear, not very large.

Jpu Divergence (mass conservation), nearly equal to JJ;O.

Je, Sensitivity of energy on momentum, mostly advective transport.
Large in boundary layers with large thermal/moisture gradients.

Jep Thermal/moisture diffusion due to pressure-melting, u - V.

Jee Advection-diffusion for energy, very nonlinear at small
regularization. Advection-dominated except.in boundary layers

August 6, 2015 96/132

How much nesting?

Juu Jup JuE
Pi=10 Byp 0 |:(Juu Jup)]
0 0 Jer P = Jou O
(Jew Jep) JeE
@ B, is a mass matrix in the

pressure space weighted by @ Inexact inner solve using
inverse of kinematic viscosity. upper-triangular with By, for
@ Elman, Mihajlovié, Wathen, Schur.
JCP 2011 for non-dimensional @ Another level of nesting.
isoviscous Boussinesq. @ GCR tolerant of inexact inner
@ Works well for solves.
non-dimensional problems on @ Outer converges in 1 or 2
the cube, not for realistic iterations.
parameters.
@ Low-order preconditioning full-accuracy unassembled high order
operator.

August 6, 2015 97/132

Why do we need multilevel solvers?

@ Elliptic problems are globally coupled
@ Without a coarse level, number of iterations proportional to inverse
mesh size
@ High-volume local communication is an inefficient way to
communicate long-range information, bad for parallel models
@ Most important with 3D flow features and/or slippery beds
@ Nested/split multilevel methods
e Decompose problem into simpler sub-problems, use multilevel
methods on each
e Good reuse of existing software
e More synchronization due to nesting, more suitable after
linearization
@ Monolithic/coupled multilevel methods
o Better convergence and lower synchronization, but harder to get
right
e Internal nonlinearities resolved locally
e More discretization-specific, less software reuse

August 6, 2015 98/132

Multigrid

Multigrid is optimal in that is does O(N) work for ||r|| < e

@ Brandt, Briggs, Chan & Smith
@ Constant work per level

o Sufficiently strong solver
o Need a constant factor decrease in the residual

@ Constant factor decrease in dof
e Log number of levels

August 6, 2015 99/132

Multilevel Solvers are a Way of Life

@ ingredients that discretizations can provide
identify “fields”
topological coarsening, possibly for fields
near-null space information
“natural” subdomains
subdomain integration, face integration

o element or subdomain assembly/matrix-free smoothing
@ solver composition

@ most splitting methods accessible from command line
energy optimization for tentative coarse basis functions
algebraic form of distributive relaxation
generic assembly for large systems and components
working on flexibile “library-assisted” nonlinear multigrid
adding support for interactive eigenanalysis

August 6, 2015 100/132

Linear Multigrid

Smoothing (typically Gauss-Seidel)

Xnew — S()(Old7 b) (1)

Coarse-grid Correction
Jooxe = R(b— Jx°0) (2)
xew — Xold + RT5XC (3)

August 6, 2015 101/132

Multigrid

Hierarchy: Interpolation and restriction operators

7' Xcoarse = Xiine I+ Xiine — Xcoarse

@ Geometric: define problem on multiple levels, use grid to compute
hierarchy

@ Algebraic: define problem only on finest level, use matrix structure to
build hierarchy

Galerkin approximation

Assemble this matrix: Acoarse = Z* AfineZ"

Application of multigrid preconditioner (V-cycle)

@ Apply pre-smoother on fine level (any preconditioner)
@ Restrict residual to coarse level with Z+

@ Solve on coarse level AcoarseX = r

@ Interpolate result back to fine level with Z*

@ Apply post-smoother on fine level (any preconditioner)

August 6, 2015 102/132

Multigrid Preliminaries

FHE

Multigrid is an O(n) method for solving algebraic problems by defining
a hierarchy of scale. A multigrid method is constructed from:
@ a series of discretizations
e coarser approximations of the original problem
@ constructed algebraically or geometrically
@ intergrid transfer operators
e residual restriction /! (fine to coarse)
o state restriction 7,5’ (fine to coarse)
e partial state interpolation /f} (coarse to fine, ‘prolongation’)
e state reconstruction 17, (coarse to fine)
© Smoothers (S)
@ correct the high frequency error components
e Richardson, Jacobi, Gauss-Seidel, etc.
o Gauss-Seidel-Newton or optimization methods

August 6, 2015 103/132

Rediscretized Multigrid using DM

@ DM manages problem data beyond purely algebraic objects

e structured, redundant, and (less mature) unstructured implementations
in PETSc
o third-party implementations

@ DMCoarsen (dmfine, coarse_comm, &coarsedm) {0 create “geometric”
coarse level

e Also DMRefine () for grid sequencing and convenience
@ DMCoarsenHookAdd () for external clients to move
resolution-dependent data for rediscretization and FAS
@ DMCreatelInterpolation (dmcoarse,dmfine, &Interp, &Rscale)
e Usually uses geometric information, can be operator-dependent
o Can be improved subsequently, e.g. using energy-minimization from
AMG
@ Resolution-dependent solver-specific callbacks use attribute caching on pm.
e Managed by solvers, not visible to users unless they need exotic things
(e.g. custom homogenization, reduced models)

August 6, 2015 104 /132

Multigrid

@ Multigrid methods uses coarse correction for large-scale error

Algorithm MG(A, b) for the solution of AX = b:

X = 8M(X, b) pre-smooth
bH = IH(F — AX) restrict residual
H = MGUEAIL, b recurse
X=X+ %" prolong correction
X=X+ S"(X,b) post-smooth

August 6, 2015 105/132

Full Multigrid(FMG)

@ start wich coarse grid

@ X is prolonged using I7, on first visit to each finer level
@ truncation error within one cycle

@ about five work units for many problems

@ highly efficient solution method

August 6, 2015 106 /132

Some Multigrid Options

@ -snes_grid_sequence: [0]
Solve nonlinear problems on coarse grids to get initial guess

@ —pc_mg_galerkin: [FALSE]
Use Galerkin process to compute coarser operators

@ -pc_mg_type: [FULL]
(choose one of) MULTIPLICATIVE ADDITIVE FULL KASKADE

@ -mg_coarse_{ksp,pc}_=*
control the coarse-level solver

@ —-mg_levels_{ksp,pc}_=*
control the smoothers on levels

@ —-mg_levels_3_{ksp,pc}_x*
control the smoother on specific level

@ These also work with MLs algebraic multigrid.

August 6, 2015 107 /132

Coupled Multigrids

@ Geometric multigrid with isotropic coarsening, ASM(1)/Cholesky
and ASM(0)/ICC(0) on levels
-mg_levels_pc_type bjacobi -mg_levels_sub_pc_type icc
-mg_levels_1_pc_type asm —-mg_levels_1_sub_pc_type
cholesky

@ ...with Galerkin coarse operators
-pc_mg_galerkin

@ ...with MLs aggregates
-pc_type ml -mg_levels_pc_type asm

@ Geometric multigrid with aggressive semi-coarsening,
ASM(1)/Cholesky and ASM(0)/ICC(0) on levels
—-da_refine_hierarchy_x 1,1,8,8 —-da_refine_hierarchy_y
2,2,1,1 -da_refine_hierarachy_z 2,2,1,1

@ Simulate 1024 cores, interactively, on my laptop
-mg_levels_pc_asm_blocks 1024

August 6, 2015 108/132

Everything is better as a smoother (sometimes)

Block preconditioners work alright, but. ..

@ nested iteration requires more dot products

@ more iterations: coarse levels don’t “see” each other

@ finer grained kernels: lower arithmetic intensity, even more limited by
memory bandwidth

Coupled multigrid

@ need compatible coarsening
e can do algebraically (Adams 2004) but would need to assemble
@ stability issues for lowest order Q; — P3ise
o Rannacher-Turek looks great, but no discrete Korn’s inequality
@ coupled “Vanka” smoothers difficult to implement with high
performance, especially for FEM
@ block preconditioners as smoothers reuse software better
@ one level by reducing order for the coarse space, more levels need
non-nested geometric MG or go all-algebraic and pay for matrix
assembly and setup

August 6, 2015 109/132

Multigrid convergence properties

@ Textbook: P~'A s spectrally equivalent to identity
e Constant number of iterations to converge up to discretization error
@ Most theory applies to SPD systems
e variable coefficients (e.g. discontinuous): low energy interpolants
e mesh- and/or physics-induced anisotropy: semi-coarsening/line
smoothers
e complex geometry: difficult to have meaningful coarse levels
@ Deeper algorithmic difficulties
@ nonsymmetric (e.g. advection, shallow water, Euler)
o indefinite (e.g. incompressible flow, Helmholtz)
@ Performance considerations
o Aggressive coarsening is critical in parallel
o Most theory uses SOR smoothers, ILU often more robust
o Coarsest level usually solved semi-redundantly with direct solver

@ Multilevel Schwarz is essentially the same with different language
e assume strong smoothers, emphasize aggressive coarsening

August 6, 2015 110/132

Algebraic Multigrid Tuning

@ Smoothed Aggregation (GAMG, ML)
Graph/strength of connection — MatSetBlockSize()
Threshold (-pc_gamg_threshold)

Aggregate (MIS, HEM)

Tentative prolongation — MatSetNearNullSpace()
Eigenvalue estimate

@ Chebyshev smoothing bounds

@ BoomerAMG (Hypre)

e Strong threshold (-pc_hypre_boomeramg_strong_threshold)
o Aggressive coarsening options

August 6, 2015 111/132

Coupled approach to multiphysics

@ Smooth all components together
o Block SOR is the most popular
@ Block ILU sometimes more robust (e.g. transport/anisotropy)
e Vanka field-split smoothers or for saddle-point problems
e Distributive relaxation
@ Scaling between fields is critical
@ Indefiniteness
o Make smoothers and interpolants respect inf-sup condition
o Difficult to handle anisotropy
e Exotic interpolants for Helmholtz
@ Transport
@ Define smoother in terms of first-order upwind discretization
(h-ellipticity)
e Evaluate residuals using high-order discretization
e Use Schur field-split: “parabolize” at top level or for smoother on
levels
@ Multigrid inside field-split or field-split inside multigrid
@ Open research area, hard to write modular software

August 6, 2015 112/132

Programming with Options

ex55: Allen-Cahn problem in 2D
@ constant mobility
@ triangular elements

Geometric multigrid method for saddle point variational inequalities:

./ex55 -ksp_type fgmres -pc_type mg -mg_levels_ksp_type fgmres
-mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_pc_fieldsplit_type schur -da_grid_x 65 -da_grid_y 65
-mg_levels_pc_fieldsplit_factorization_type full
-mg_levels_pc_fieldsplit_schur_precondition user
-mg_levels_fieldsplit_1_ksp_type gmres -mg_coarse_ksp_type preonly

-mg_levels_fieldsplit_1_pc_type none -mg_coarse_pc_type svd
-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor -pc_mg_levels 5

-mg_levels_fieldsplit_0_pc_sor_forward -pc_mg_galerkin
—-snes_vi_monitor -ksp_monitor_true_residual -snes_atol 1l.e-11
-mg_levels_ksp_monitor -mg_levels_fieldsplit_ksp_monitor
-mg_levels_ksp_max_it 2 -mg_levels_fieldsplit_ksp_max_it 5

August 6, 2015 113/132

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex55.c.html

Scalability definitions

Strong scalability
@ Fixed problem size

@ execution time T inversely
proportional to number of
processors p

Weak scalability
@ Fixed problem size per
processor

@ execution time constant as
problem size increases

Slope
log T| g /%eerenen OO,
OOJ’{?
U
log p
Slope . poor
L — N o p

August 6, 2015 114 /132

Scalability Warning

The easiest way to make software scalable
is to make it sequentially inefficient.
(Gropp 1999)

@ We really want efficient software
@ Need a performance model

e memory bandwidth and latency
e algorithmically critical operations (e.g. dot products, scatters)
o floating point unit

@ Scalability shows marginal benefit of adding more cores, nothing
more

@ Constants hidden in the choice of algorithm
@ Constants hidden in implementation

August 6, 2015 115/132

Limits of “scalability”?

@ Transient simulation does not weak scale.
e Fixed turn-around needed: policy, manufacturing/supply-chain,
active control, real-time guidance (field work, surgery, etc.)
e d-dimensional problem, increase resolution by 2x.
e Data increases by 29, but we need 2x more time steps (hyperbolic).
e With perfect scaling, we use 29+ more cores.

e Local data changes by 29/29+1 = 1

@ More applications feeling this
o Asymptotics are relentless
o New analysis requires more solves in sequence
@ From forward simulation to optimization with uncertainty ...
@ New physics and higher fidelity observation requires more
calibration/validation
@ Other applications are safe for now
o Steady-state solves with scalable methods
e Transient with a small number of time steps
o Maximize resolution/problem size — memory-constrained

August 6, 2015 116/132

Evaluating methods

@ Performance of methods will depend on grid resolution and model
parameters (regime and heterogeneity).
@ A method is:
e scalable (also “optimal”) if its performance is independent of
resolution and parallelism
e robust if its performance is (nearly) independent of model
parameters
o efficient if it solves the problem in a small multiple of the cost to
evaluate the residual’

"We'll settle for “as fast as the best known method”.

August 6, 2015 117/132

Evaluating methods

@ Performance of methods will depend on grid resolution and model
parameters (regime and heterogeneity).
@ A method is:
e scalable (also “optimal”) if its performance is independent of
resolution and parallelism
e robust if its performance is (nearly) independent of model
parameters
o efficient if it solves the problem in a small multiple of the cost to
evaluate the residual’

@ Linear problems typically arise from linearizing a nonlinear
problem. This step is not necessary, but it is convenient for
reusing software and for debugging.

"We'll settle for “as fast as the best known method”.

August 6, 2015 117/132

Importance of Computational Modeling

Without a model,
performance measurements are meaningless!

Before a code is written, we should have a model of
@ computation
@ memory usage
@ communication
@ bandwidth
@ achievable concurrency
This allows us to
@ verify the implementation
@ predict scaling behavior

August 6, 2015 118/132

Complexity Analysis

The key performance indicator, which we will call the balance factor f,
is the ratio of flops executed to bytes transfered.

flop
byte

@ Using the peak flop rate r,.., we can get the required bandwidth
Bieq for an algorithm

@ We will designate the unit as the Keyes

h peak
B

@ Using the peak bandwidth B,..x, we can get the maximum flop
rate rax for an algorithm

Breq = (4)

Imax = BBpeak (5)

August 6, 2015 119/132

STREAM Benchmark

Simple benchmark program measuring sustainable memory bandwidth

@ Protoypical operation is Triad (WAXPY): w =y + ax
@ Measures the memory bandwidth bottleneck (much below peak)
@ Datasets outstrip cache

Machine Peak (MF/s) | Triad (MB/s) | MF/MW Eqg. MF/s
Matt’s Laptop 1700 1122.4 12.1 93.5 (5.5%)
Intel Core2 Quad 38400 5312.0 57.8 | 442.7 (1.2%)
Tesla 1060C 984000 102000.0* 77.2 | 8500.0 (0.8%)

Table: Bandwidth limited machine performance

http://www.cs.virginia.edu/stream/

August 6, 2015 120/132

http://www.cs.virginia.edu/stream/

Sparse Mat-Vec performance model

Compressed Sparse Row format (AlJ)
For m x n matrix with N nonzeros
ai row starts, length m + 1
aj column indices, length N, range [0,n— 1)

aa nonzero entries, length N, scalar values

for (i=0; i<m; i++)
y < y+ Ax for (j=ail[i]; j<ai[i+1]; j++4)
y[i] +=aa[j] = x[aj[j]];

@ One add and one multiply per inner loop
@ Scalar aa[j] and integer aj[j] only used once
@ Must load a7 [7] to read from x, may not reuse cache well

August 6, 2015 121/132

Analysis of Sparse Matvec (SpMV)

Assumptions
@ No cache misses
@ No waits on memory references
Notation
m Number of matrix rows
nz Number of nonzero matrix elements
V' Number of vectors to multiply
We can look at bandwidth needed for peak performance

2\ m 6
<8 + V> ey byte/flop (6)
or achieveable performance given a bandwith BW
Vnz
BV 2)ymtenzo/ Milop/s)

Towards Realistic Performance Bounds for Implicit CFD Codes, Gropp,
Kaushik, Keyes, and Smith.

August 6, 2015 122/132

http://www.mcs.anl.gov/~kaushik/Papers/pcfd99_gkks.pdf
http://www.mcs.anl.gov/~kaushik/Papers/pcfd99_gkks.pdf

Performance Caveats

@ The peak flop rate r,..xc on modern CPUs is attained through the
usage of a SIMD multiply-accumulate instruction on special
128-bit registers.

@ SIMD MAC operates in the form of 4 simultaneous operations (2
adds and 2 multiplies):

Ci =C1+ a1 x by (8)
CQZCQ—I—aQ*bg (9)

You will miss peak by the corresponding number of operations you
are missing. In the worst case, you are reduced to 25% efficiency
if your algorithm performs naive summation or products.

@ Memory alignment is also crucial when using SSE, the
instructions used to load and store from the 128-bit registers throw
very costly alignment exceptions when the data is not stored in
memory on 16 byte (128 bit) boundaries.

August 6, 2015 123/132

Profiling basics

@ Get the math right

Choose an algorithm that gives robust iteration counts and really
converges

@ Look at where the time is spent

Run with -1og_summary and look at events

VecNorm, VecDot measures latency

MatMult measures neighbor exchange and memory bandwidth
PCSetUp factorization, aggregation, matrix-matrix products, . ..
PCApply V-cycles, triangular solves, ...

KSPSolve linear solve

SNESFunctionEval residual evaluation (user code)
SNESJacobianEval matrix assembly (user code)

August 6, 2015 124 /132

Communication Costs

@ Reductions: usually part of Krylov method, latency limited

VecDot

VecMDot

VecNorm
MatAssemblyBegin

Change algorithm (e.g. IBCGS)

@ Point-to-point (nearest neighbor), latency or bandwidth

VecScatter

MatMult

PCApply

MatAssembly

SNESFunctionEval

SNESJacobianEval

Compute subdomain boundary fluxes redundantly
Ghost exchange for all fields at once

Better partition

August 6, 2015 125/132

Performance Debugging

@ PETSc has integrated profiling
@ Option —1og_summary prints a report on PetscFinalize ()
@ PETSc allows user-defined events

e Events report time, calls, flops, communication, etc.
e Memory usage is tracked by object

@ Profiling is separated into stages
e Event statistics are aggregated by stage

August 6, 2015 126 /132

Profiling

@ Use -1og_summary for a performance profile
e Event timing

Event flops
e Memory usage
o MPI messages

@ Call PetscLogStagePush () and PetscLogStagePop ()
e User can add new stages

@ Call petscLogEventBegin () and PetscLogEventEnd ()
e User can add new events

@ Call petscLogFlops () toinclude your flops

August 6, 2015 127 /132

Reading -1og_summary

o Max
Time (sec): 1.548e+02
Objects: 1.028e+03
Flops: 1.519%e+10
Flops/sec: 9.814e+07
MPI Messages: 8.854e+03
MPI Message Lengths: 1.936e+08
MPI Reductions: 2.799e+03

Also a summary per stage

N

performance questions on mailing list

Max/Min

.00122
.00000
.01953
.01829
.00556
.00950
.00000

N WO e

Avg

.547e+02
.028e+03
.505e+10
.727e+07
.819e+03
.185e+04

[EESG RE Rt

Memory usage per stage (based on when it was allocated)
Time, messages, reductions, balance, flops per event per stage
Always send -1og_summary when asking

Total

.204e+11
.782e+08
.055e+04
.541e+09

August 6, 2015 128/132

Reading -1og_summary

Event Count Time (sec) Flops —-—— Global —--—-
Max Ratio Max Ratio Max Ratio Mess Avg len Reduct ST $F %M $L %R

o |

—--— Event Stage 1: Full solve

VecDot 43 1.0 4.8879e-02 8.3 1.77e+06 1.0 0.0e+00 0.0e+00 4.3e+01 0 O O 0 O
VecMDot 1747 1.0 1.3021e+00 4.6 8.16e+07 1.0 0.0e+00 0.0e+00 1.7e+03 0 1 0 0 14
VecNorm 3972 1.0 1.5460e+00 2.5 8.48e+07 1.0 0.0e+00 0.0e+00 4.0e+03 0 1 0 0 31
VecScale 3261 1.0 1.6703e-01 1.0 3.38e+07 1.0 0.0e+00 0.0e+00 0.0e+00 O 0 O O O
VecScatterBegin 4503 1.0 4.0440e-01 1.0 0.00e+00 0.0 6.1e+07 2.0e+03 0.0e+00 O 0 50 26 O
VecScatterEnd 4503 1.0 2.8207e+00 6.4 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 O 0 O O O
MatMult 3001 1.0 3.2634e+01 1.1 3.68e+09 1.1 4.9e+07 2.3e+03 0.0e+00 11 22 40 24 0 2
MatMultAdd 604 1.0 6.0195e-01 1.0 5.66e+07 1.0 3.7e+06 1.3e+02 0.0e+00 0 0 3 0 O
MatMultTranspose 676 1.0 1.3220e+00 1.6 6.50e+07 1.0 4.2e+06 1.4e+02 0.0e+00 O O 3 0 O
MatSolve 3020 1.0 2.5957e+01 1.0 3.25e+09 1.0 0.0e+00 0.0e+00 0.0e+00 9 21 0 O 0 1
MatCholFctrSym 3 1.0 2.8324e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 O O 0 O O
MatCholFctrNum 69 1.0 5.7241e+00 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 0.0e+00 2 4 0 0 O
MatAssemblyBegin 119 1.0 2.8250e+00 1.5 0.00e+00 0.0 2.1e+06 5.4e+04 3.1le+02 1 0 2 24 2
MatAssemblyEnd 119 1.0 1.9689e+00 1.4 0.00e+00 0.0 2.8e+05 1.3e+03 6.8e+01 1 0 O 0 1
SNESSolve 4 1.0 1.4302e+02 1.0 8.11e+09 1.0 6.3e+07 3.8e+03 6.3e+03 51 50 52 50 50 9
SNESLineSearch 43 1.0 1.5116e+01 1.0 1.05e+408 1.1 2.4e+06 3.6e+03 1.8e+02 5 1 2 2 1 1
SNESFunctionEval 55 1.0 1.4930e+01 1.0 0.00e+00 0.0 1.8e+06 3.3e+03 8.0e+00 5 0 1 1 0 1
SNESJacobianEval 43 1.0 3.7077e+01 1.0 7.77e406 1.0 4.3e+06 2.6e+04 3.0e+02 13 0 4 24 2 2
KSPGMRESOrthog 1747 1.0 1.5737e+00 2.9 1.63e+08 1.0 0.0e+00 0.0e+00 1.7e+03 1 1 0 0 14
KSPSetup 224 1.0 2.1040e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 3.0e+01 O O 0 0 O
KSPSolve 43 1.0 8.9988e+01 1.0 7.99e+09 1.0 5.6e+07 2.0e+03 5.8e+03 32 49 46 24 46 6
PCSetUp 112 1.0 1.7354e+01 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 8.7e+01 6 4 0 0 1 1
PCSetUpOnBlocks 1208 1.0 5.8182e+00 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 8.7e+01 2 4 0 0 1
PCApply 276 1.0 7.1497e+01 1.0 7.14e+09 1.0 5.2e+07 1.8e+03 5.1e+03 25 44 42 20 41 4

st 6, 20 129/132

Adding A Logging Class

static int CLASS_1ID;

PetscLogClassRegister (&CLASS_ID, "name");

@ Class ID identifies a class uniquely
@ Must initialize before creating any objects of this type

August 6, 2015 130/132

Adding A Logging Event
C

static int USER_EVENT;

PetscLogEventRegister (&USER_EVENT, "name", CLS_ID);
PetscLogEventBegin (USER_EVENT,0,0,0,0);

/% Code to Monitor =/

PetscLogFlops (user_event_flops);
PetscLogEventEnd (USER_EVENT, 0,0,0,0);

August 6, 2015 131/132

Adding A Logging Event

Python

with PETSc.logEvent (' Reconstruction’) as recEvent:

All operations are timed in recEvent

reconstruct (sol)
Flops are logged to recEvent
PETSc.Log.logFlops (user_event_flops)

August 6, 2015 132/132

Adding A Logging Stage
C

int stageNum;

PetscLogStageRegister (&stageNum, "name");
PetscLogStagePush (stageNum) ;

/* Code to Monitor =*/

PetscLogStagePop () ;

August 6, 2015 133/132

PETSc: Hands-on exercises

» [Instructions:
http://www.mcs.anl.gov/petsc/petsc-3.6-atpesc2015/tutorials/HandsOnExercise.html

= Examples:
= Linear Poisson equation on a 2D grid
= src/ksp/ksp/examples/tutorials/ex50.c
Nonlinear ODE arising from a time-dependent 1-dimensional PDE
= src/ts/examples/tutorials/ex2.c
Nonlinear PDE on a structured grid
= src/snes/examples/tutorials/ex19.c
Linear Stokes-type PDE on a structured grid
= src/ksp/ksp/examples/tutorials/ex42.c
Nonlinear time-dependent PDE on an unstructured grid
» src/ts/examples/tutorials/ex11.c

= Questions:
= Satish Balay
= Jed Brown
= Barry Smith

THE
UNIVERSITY OF
BRITISH
COLUMBIA .

M, Berkeley @ @ Rensseler @MU

==v
=7

	fastmath-petsc-atpesc-08-2015
	handson-petsc

